ICT

I-Mathic

Formal Methods in
Software Engineering Practice

Emile van Gerwen
Emile.vanGerwen@imtech.nl

Technical Systems TUE 18 april 2006

A 2 1 =

Overview

ICT

Why |-Mathic
Sequence Enumeration
Verification

Case

Code Generation

CSP

Future developments

Technical Systems TUE 18 april 2006

= -
Why I-Mathic

ICT

We see
— Distributed applications
— Integration of complex units into even more complex units

Testing all scenario’s is impossible

Any alternative must be cost effective
(formal methods?)

Technical Systems TUE 18 april 2006

A S A =

Formal Methods

ICT

Formal Methods have promised much and delivered
little:

— The solution is often more complicated than the problem

— Formal specifications use difficult notations and require extensive
mathematical background

— Critical Stakeholders - Business Analysts, Domain Experts and
Customers - cannot understand the formal specifications

Technical Systems TUE 18 april 2006

What everybody knows

ICT

Effort (Man Hours)

Typical Occurrence of Rework

m Rework
@ Development

Effort (Man Hours)

Typical Origins of Rework

@ Rework by Origin
@ Development

Technical Systems

TUE

18 april 2006

ICT

2 =S A =
V-Model

Usar Requiramenis { ——————————— Accaptance Test
I
Sofwge A < : : 4 System Test

Archgeclurel: @ 1 Integraton Test

n —
Implermeniation

I-Mathic: fix design errors in designh phase

Technical Systems TUE 18 april 2006

.

12 = I

: Model
Design
’% J generation
|
]
.\‘ vecificatig
Requirements <
Sequence
enumeration Code Model
> generation checking
.
]
o>
Derived requirements Test Code

generation

Test code Source code Verification result

Technical Systems TUE 18 april 2006

ICT

el d "
B N
K] i — .

I-Mathic view of the world

Technical Systems TUE 18 april 2006

Technical Systems

Program: F

F:S*->RorF:(S*S)->R
Where,

S is a finite set of Stimuli (input)
R is a finite set of Responses (output)

TUE

ICT

18 april 2006

ICT

el d "
B N
] i — .

Sequence Enumeration

Define an equivalence relation on S’
S, = S, if all future behavior from s, is equal to that of s,.

Equivalence classes are identified by the
shortest sequence, called Canonical
Sequence.

Now define F in terms of Canonical
Sequences.

Note: All extensions of an illegal sequence are also illegal.

Technical Systems TUE 18 april 2006

18 april 2006

_Imtech
ICT

_Imtech |

ICT

o !
3 e A

Software components

Kernel
Implementation

Technical Systems TUE 18 april 2006

File wiew Tools Help
E=N=T=N
Run ffrom system kemel Perpheral)
: g | Fg o e 2]
= =:| KemelExample # | Condition | Accept ~ | Action | Next State | Description | Ref. ~
=L ;rystem @ 0:INIT E
=™ System N 1 in raAbortFraduction ILLEGAL
~@= in : Peripherallnterface |
=& out : Notfylrterace ft 2 in.rgAlowRecovery ILLEGAL
= chanl :in = kemelir E o out rtIntCompleted_Ck(); eMod=Prod: 3 :
L s % in.rginitialize bOOC_M<false 11:DLE Init succeeded
== chan3 : kemel transol 4 in rglnitialize out rtinitCompleted_NotCk{) BINIT it failed
~+ chan4 - kemel.sqout - 5 in raPauseProduction ILLEGAL
¥ G I s 6 in rqStartProduction ILLEGAL
=+ chanb : equipment.ou
%5 equipment : Periphera 74 in.SetModule EngineeringMode ILLEGAL
% kemel : Kemel fin syst 8 in.SetProducingMode ILLEGAL
; «_ transport : Peripheral { 9 in.Set SystemEngineeringMods ILLEGAL
= .MT{”;:ZTE' 10 in Teminats ILLEGAL
E = 11:IDLE
12 in rgAbort Production out ntAbortCompleted() 11IDLE Abort also possible in Idle state
13 in.rgAllowRecovery ILLEGAL
14 in.rginitialize ILLEGAL
15 in.rgPauseProduction ILLEGAL
16 eMod != Mod in rgStart Froduction out ntProductionStarted() 26:RUNNING Starting production succeeds
17 eMod != Mod in.rgStart Production out ntEmorDccumed) 38:ERROR Starting production fails
18 eMod == Mod in.rqStart Production ILLEGAL B
19 eMod == Prod in.SetModule EngineeringMode eMod=Mad 11:1DLE
2 eMod - Prod in SetModule EngineeringMode ILLEGAL St b i
21 &Mod != Prod in.SetProducingMode eMod=Frod 11:IDLE Changing to producing mode
22 eMod == Prod in.SetProducingMode ILLEGAL
23 eMod == Prod in.SetSystemEngineeringMode eMod=5ys 11:IDLE
24 eMod != Prod in.SetSystemEngineeringMode ILLEGAL
25 in. Teminate TINIT Teminate: back to Init, no response
=] 26:RUNNING
27 in rgAbort Production out ntAbortCompleted() 11:DLE Abort always makes module go to Idle
28 in.rgAllowRecovery ILLEGAL
29 in.rginitialize ILLEGAL
30 in rgPauseProduction out rtProductionPaused() 11:IDLE Paused oke: going back to idle
31 in rgPauseProduction out ntEmorDccumed) 38:ERROR Pausing failed, note emor
32 in.rgStart Production ILLEGAL
£ ! 2 o : in SetMadilaEnninserinallade : 111 EGAI b
¥ Interdf ... Proce... | & Defin... | Specfication Diagram | @ Requirements | [Documentation | fg Substitution | B8 Console |
3 1
I-Mathic Studio by Imtech ICT

Technical Systems

18 april 2006

= M =

ICT

Run from system.System)

system.System

: out Ig

kernel
. system.kernel.Kernel

eqin eqout transin transout out In

A
2

equipment| transpo
. system.kernel.Pefipheralf |: sys mkernel erlpheral

y

out N

BB Snecfication [B Miaomm |[@ Remviemerts | B Docomertation | Ae Sohatihdion

ICT

Sequence Enumeration Results

The Module Function is complete
— Total function: Maps every possible input sequence to response

The Module is the right system
— Every transition rule justified
— Full requirements tracing

— Derived requirements fill the gaps — we do not leave this to the
programmer

Is the Module correct?

Technical Systems TUE 18 april 2006

Verification

ICT

CSP: Communicating Sequential Processes

Model checker explores all state combinations

ensuring that:
— Model is deterministic
— Model implements interface according to specification
— There are no deadlocks
— There are no livelocks
— Queues never full (processes behave freely)

Technical Systems TUE 18 april 2006

Eile | ésserl:l Process | Options |

Refinement:
Specification kModel

Reﬂnement] Ceadlock | Livelock | Determinism Evaluate

L“ él Failures-divergence — L“

|mterrupt |

Implementation

MmEormalSystemns R

2

Check | Add
+ 3pec deadlock free [F]
+ Kemel deterministic [FO]
+" |Implementation deadlock free [F]
+ 3pec livelock free
«" |lmplementation livelock free
v Cebug 15
v e
v | File |
%= E Example 1 Slof1
= K
o1
E ;

E Kernel [T

E Fernel |Kernel

E " Performs rJ HAccepts

E rAodin.rglnitialize [| 4 TransQutntinitCompleted_MNotOk, =

E BBKERMELD Transln.rglnitialize TransOut.ntinitCompleted_ Ok,

E TransOut.ntlnitCompleted_ Ok EqOut.ntExitErrar,

Eqln.rglnitialize EqOut.ntProductionStarted,

: EqQut.ntinitCompleted Ok EgqOutntProductionFPaused,

E hodOut.ntlnitCompleted_ Ok TransCOutntAbortCompleted,

E Modln.rqStar‘tF’roduction_ TransOut.ntErrorOccured,

£ Eqgln.rgStartProduction quutntébor‘gjomple{}ed,
f]_ EqQut.ntProductionStarted quui'nil r.r;c(J:r ccluied, MotOk 7
FDORZ Transin.rgStartPFroduction ? Mo AN 2 : |

Technical Systems

TUE

18 april 2006

ICT

12 2 A=

Assembleon AX

Technical Systems TUE 18 april 2006

ICT

1..20 Pick & Place Robots

A
- N
oo | - o
AN S
-

Transport system containing PCB'’s

Technical Systems TUE 18 april 2006

ICT

AX Ke rne | Process Ctrl

GPE

A

UTL
Monitor

Module Ctrl

Device Ctrl

Technical Systems TUE 18 april 2006

Results measured over 3 AX projects

ICT

Number of errors reduced by 40%. Most difficult ones
were gone (no more deadlocks or race conditions),
only “easy to solve ones” remained.

Total effort was significantly reduced compared to
Industry averages.

Technical Systems TUE 18 april 2006

A S A =

Handling industrial size systems

ICT

We have seen that |-Mathic makes formal methods
accessible to software engineers. But can it handle
“real” systems?

YES! Because of:
Algorithms

System architecture

Refinement

We have demonstrated this on the AX
(more than one million lines of code)

Technical Systems TUE 18 april 2006

Code Generation

ICT

Generation of state machine
code from sequence
enumeration;

Abstract State Machine

Separation of interaction from AN
actual implementation to
facilitate updates.

State Machine

Technical Systems TUE 18 april 2006

=N -

Technical Details: CSP

PO= a—->b-=>P0 R=x—-2>a—->R
0c > P1

P1=d>b>b->P0

Sys = PO || R
{a}

<X, a, b> Is a trace of Sys
<a, b, x> iIs not

Technical Systems TUE 18 april 2006

ICT

2 =S A =
Channels in CSP

P=c? >dlx->P (one place buffer)

Q —— P [—— R

Q=cl5>Q R=d? >R

Sys=Q||P||R <c.5, d.5, c.5>
{c} {d} IS a trace of Sys

Technical Systems TUE 18 april 2006

ICT

Renaming and Hiding
P=c?->dl(x+1) > P

C 9
Q=1?x 2> g!l(x*2) 2 Q

Sys = (P [[d<-f]] [{If}] Q) \ {If]}

Sys=P[d<->f]Q

<c.4, 9.10> is a trace of Sys

18 april 2006

CIE= -
Deterministic and non-deterministic processes
PO= b->P0
lc—> PO P2= a>b-> P2
Ja—->c—-> P2
P1= b->P1
[1c—> P1

<b, c, ¢, c, b> is a trace of both PO and P1,

But they behave differently!

PO [T=P1 and P1[T=P0 (equivalentin the Trace model)

Not PO [F= P1 (not equivalent in the Failures model)

Technical Systems TUE 18 april 2006

CSP and “normal” software

Technical Systems

Software CSP
Component Process
Method call Event

Message Event

passing
Handle Deterministic
message choice
Association Channel

TUE

ICT

18 april 2006

Threads

ICT

A CSP process has specific communication points
Multi-threaded applications are chaotic

Solutions:
— Event queue (active object pattern, command pattern)
— Mutex on component methods
— Model thread interaction explicitly (shared variables, semaphores...)

Technical Systems TUE 18 april 2006

A 2 1 =

Future Developments

ICT

Better tools, more automation

Better debug capabilities

Handle extended finite state machines
...and many more ideas...

(Interested to help? Emile.vanGerwen@imtech.nl)

Technical Systems TUE 18 april 2006

ICT

17 2 A =
BIEE

™ Fdit Behaviour

iour

in1fstop/out.stop

in1.start/out.g

Running

(] .4 Cancel I

Technical Systems 18 april 2006

Formal Verification

IS not going
to output
“Stop!!

Designing . INS | ImtechICT _

18 april 2006

ICT

Questions

Technical Systems TUE 18 april 2006

ICT

Prowell S., Trammell C., Linger R., Poore J,
Cleanroom Software Engineering: Technology and
Process, Addison-Wesley, 1999.

Hoare C.A.R., Communicating Sequential Processes,
Prentice Hall International, 1985.

Hall A., Seven Myths of Formal Methods, in: IEEE
Software Vol 7 No 5, 1990.

FDR2 User Manual, Formal systems Europe Lid,
2003.

Technical Systems TUE 18 april 2006

