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Why I-Mathic
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We see
— Distributed applications
— Integration of complex units into even more complex units

Testing all scenario’s is impossible

Any alternative must be cost effective
(formal methods?)
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Formal Methods

ICT

Formal Methods have promised much and delivered
little:

— The solution is often more complicated than the problem

— Formal specifications use difficult notations and require extensive
mathematical background

— Critical Stakeholders - Business Analysts, Domain Experts and
Customers - cannot understand the formal specifications
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What everybody knows
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Effort (Man Hours)

Typical Occurrence of Rework

m Rework
@ Development

Effort (Man Hours)

Typical Origins of Rework

@ Rework by Origin
@ Development
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I-Mathic: fix design errors in designh phase
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I-Mathic view of the world
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Technical Systems

Program: F

F:S*->RorF:(S*S)->R
Where,

S is a finite set of Stimuli (input)
R is a finite set of Responses (output)
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Sequence Enumeration

Define an equivalence relation on S’
S, = S, if all future behavior from s, is equal to that of s,.

Equivalence classes are identified by the
shortest sequence, called Canonical
Sequence.

Now define F in terms of Canonical
Sequences.

Note: All extensions of an illegal sequence are also illegal.
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Software components

Kernel
Implementation
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14 in.rginitialize ILLEGAL
15 in.rgPauseProduction ILLEGAL
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29 in.rginitialize ILLEGAL
30 in rgPauseProduction out rtProductionPaused() 11:IDLE Paused oke: going back to idle
31 in rgPauseProduction out ntEmorDccumed ) 38:ERROR Pausing failed, note emor
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Sequence Enumeration Results

The Module Function is complete
— Total function: Maps every possible input sequence to response

The Module is the right system
— Every transition rule justified
— Full requirements tracing

— Derived requirements fill the gaps — we do not leave this to the
programmer

Is the Module correct?
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Verification
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CSP: Communicating Sequential Processes

Model checker explores all state combinations

ensuring that:
— Model is deterministic
— Model implements interface according to specification
— There are no deadlocks
— There are no livelocks
— Queues never full (processes behave freely)
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Assembleon AX
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Transport system containing PCB'’s
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Results measured over 3 AX projects

ICT

Number of errors reduced by 40%. Most difficult ones
were gone (no more deadlocks or race conditions),
only “easy to solve ones” remained.

Total effort was significantly reduced compared to
Industry averages.
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Handling industrial size systems

ICT

We have seen that |-Mathic makes formal methods
accessible to software engineers. But can it handle
“real” systems?

YES! Because of:
Algorithms

System architecture

Refinement

We have demonstrated this on the AX
(more than one million lines of code)
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Code Generation
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Generation of state machine
code from sequence
enumeration;

Abstract State Machine

Separation of interaction from AN
actual implementation to
facilitate updates.

State Machine
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Technical Details: CSP

PO= a—->b-=>P0 R=x—-2>a—->R
0c > P1

P1=d>b>b->P0

Sys = PO || R
{a}

<X, a, b> Is a trace of Sys
<a, b, x> iIs not
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Channels in CSP

P=c? >dlx->P (one place buffer)

Q —— P [—— R

Q=cl5>Q R=d? >R

Sys=Q||P||R <c.5, d.5, c.5>
{c} {d} IS a trace of Sys
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Renaming and Hiding
P=c?->dl(x+1) > P

C 9
Q=1?x 2> g!l(x*2) 2 Q

Sys = (P [[d<-f]] [{If}] Q) \ {If]}

Sys=P[d<->f]Q

<c.4, 9.10> is a trace of Sys
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Deterministic and non-deterministic processes
PO= b->P0
lc—> PO P2= a>b-> P2
Ja—->c—-> P2
P1= b->P1
[1c—> P1

<b, c, ¢, c, b> is a trace of both PO and P1,

But they behave differently!

PO [T=P1 and P1[T=P0 (equivalentin the Trace model)

Not PO [F= P1 (not equivalent in the Failures model)
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CSP and “normal” software

Technical Systems

Software CSP
Component Process
Method call Event

Message Event

passing
Handle Deterministic
message choice
Association Channel
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Threads
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A CSP process has specific communication points
Multi-threaded applications are chaotic

Solutions:
— Event queue (active object pattern, command pattern)
— Mutex on component methods
— Model thread interaction explicitly (shared variables, semaphores...)
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Future Developments

ICT

Better tools, more automation

Better debug capabilities

Handle extended finite state machines
...and many more ideas...

(Interested to help? Emile.vanGerwen@imtech.nl)
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in1fstop/out.stop

in1.start/out.g

Running

(] .4 Cancel I
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Formal Verification

IS not going
to output
“Stop!!

Designing . INS | ImtechICT _
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Questions
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