
Technical Systems TUE 18 april 2006

I-Mathic

Formal Methods in
Software Engineering Practice

Emile van Gerwen
Emile.vanGerwen@imtech.nl

Technical Systems TUE 18 april 2006

Overview

1. Why I-Mathic

2. Sequence Enumeration

3. Verification

4. Case

5. Code Generation

6. CSP

7. Future developments

Technical Systems TUE 18 april 2006

Why I-Mathic

� We see
– Distributed applications
– Integration of complex units into even more complex units

� Testing all scenario’s is impossible

� Any alternative must be cost effective
(formal methods?)

Technical Systems TUE 18 april 2006

Formal Methods

� Formal Methods have promised much and delivered
little:
– The solution is often more complicated than the problem
– Formal specifications use difficult notations and require extensive

mathematical background
– Critical Stakeholders - Business Analysts, Domain Experts and

Customers - cannot understand the formal specifications

Technical Systems TUE 18 april 2006

What everybody knows

Typical Origins of Rework

Requ
ire

ments

High L
ev

el D
es

ign

Detaile
d D

es
ign

Im
plem

en
tat

ion
Unit T

es
t

Int
eg

ra
tio

n Tes
t

Sys
tem T

es
t

Main
ten

anc
e

E
ffo

rt
 (M

an
 H

ou
rs

)

Rework by Origin

Development

Typical Occurrence of Rework

Requ
ire

ments

High L
ev

el D
es

ign

Detaile
d D

es
ign

Im
plem

en
tat

ion
Unit T

es
t

Int
eg

ra
tio

n Tes
t

Sys
tem T

es
t

Main
ten

anc
e

E
ffo

rt
 (M

an
 H

ou
rs

)

Rework

Development

Technical Systems TUE 18 april 2006

V-Model

I-Mathic: fix design errors in design phase

Technical Systems TUE 18 april 2006

...
...

Source codeTest code

Code
generation

Test Code
generation

Model
generation

Model
checking

Sequence
enumeration

Model

Requirements

Derived requirements

Design

...
Sequence Enumeration

Network

Verification result

I-Mathic Specification

Technical Systems TUE 18 april 2006

I-Mathic view of the world

������

������ ������

������

�����	

���	�
�
��

���	�
�
��

���	�
�
�

Technical Systems TUE 18 april 2006

Black Box

Program: FProgram: F
S R

F: S+ -> R or F: (S*, S) -> R

Where,

S is a finite set of Stimuli (input)
R is a finite set of Responses (output)

What is a software system?

Technical Systems TUE 18 april 2006

Sequence Enumeration

Define an equivalence relation on S*:
s0 ≡ s1 if all future behavior from s0 is equal to that of s1.

� Equivalence classes are identified by the
shortest sequence, called Canonical
Sequence.

� Now define F in terms of Canonical
Sequences.

Note: All extensions of an illegal sequence are also illegal.

Technical Systems TUE 18 april 2006

Technical Systems TUE 18 april 2006

Software components

IKernel

IEquipment ITransport

Kernel
Implementation

ISystem

Technical Systems TUE 18 april 2006

Sequence Enumeration Example

Technical Systems TUE 18 april 2006

Technical Systems TUE 18 april 2006

Sequence Enumeration Results

� The Module Function is complete
– Total function: Maps every possible input sequence to response

� The Module is the right system
– Every transition rule justified
– Full requirements tracing
– Derived requirements fill the gaps – we do not leave this to the

programmer

� Is the Module correct?

Technical Systems TUE 18 april 2006

Verification

� CSP: Communicating Sequential Processes

� Model checker explores all state combinations
ensuring that:
– Model is deterministic
– Model implements interface according to specification
– There are no deadlocks
– There are no livelocks
– Queues never full (processes behave freely)

Technical Systems TUE 18 april 2006

Debugging Design

Technical Systems TUE 18 april 2006

Assembléon AX

Technical Systems TUE 18 april 2006

Schematic overview

Run outRun in

PP PP PP … PP PP

Transport system containing PCB’s

1..20 Pick & Place Robots

Technical Systems TUE 18 april 2006

Part of system architecture

TCPPC SVS UTL
Monitor

AX Kernel Process Ctrl

‘Glue’

GPETERM GPE

Module Ctrl

Device Ctrl

Technical Systems TUE 18 april 2006

Results measured over 3 AX projects

� Number of errors reduced by 40%. Most difficult ones
were gone (no more deadlocks or race conditions),
only “easy to solve ones” remained.

� Total effort was significantly reduced compared to
industry averages.

Technical Systems TUE 18 april 2006

Handling industrial size systems

� Algorithms

� System architecture

� Refinement

We have seen that I-Mathic makes formal methods
accessible to software engineers. But can it handle
“real” systems?

We have demonstrated this on the AX
(more than one million lines of code)

YES! Because of:

Technical Systems TUE 18 april 2006

Code Generation

� Generation of state machine
code from sequence
enumeration;

� Separation of interaction from
actual implementation to
facilitate updates.

Technical Systems TUE 18 april 2006

Technical Details: CSP

P0 = a � b � P0
� c � P1

P1 = d � b � b � P0

R = x � a � R

Sys = P0 || R
{a}

<x, a, b> is a trace of Sys
<a, b, x> is not

Technical Systems TUE 18 april 2006

Channels in CSP

P = c?x � d!x -> P (one place buffer)

Q

Q = c!5 � Q R = d?y � R

P R

Sys = Q || P || R
{c} {d}

<c.5, d.5, c.5>
is a trace of Sys

Technical Systems TUE 18 april 2006

Renaming and Hiding

P = c?x � d!(x+1) � P

Q = f?x � g!(x*2) � Q

Sys = (P [[d<-f]] [{|f|}] Q) \ {|f|}

Sys = P [d <-> f] Q

<c.4, g.10> is a trace of Sys

gP Qc d f

Sys

Technical Systems TUE 18 april 2006

Deterministic and non-deterministic processes

P0 = b � P0
� c � P0

P1 = b � P1
� � � � P1

<b, c, c, c, b> is a trace of both P0 and P1,

But they behave differently!

P0 [T= P1 and P1 [T= P0 (equivalent in the Trace model)

Not P0 [F= P1 (not equivalent in the Failures model)

P2 = a � b � P2
� a � c � P2

Technical Systems TUE 18 april 2006

CSP and “normal” software

ChannelAssociation

Deterministic
choice

Handle
message

EventMessage
passing

EventMethod call

ProcessComponent

CSPSoftware

Technical Systems TUE 18 april 2006

Threads

� A CSP process has specific communication points

� Multi-threaded applications are chaotic

� Solutions:
– Event queue (active object pattern, command pattern)
– Mutex on component methods
– Model thread interaction explicitly (shared variables, semaphores…)

Technical Systems TUE 18 april 2006

Future Developments

� Better tools, more automation

� Better debug capabilities

� Handle extended finite state machines

� …and many more ideas…

(Interested to help? Emile.vanGerwen@imtech.nl)

Technical Systems TUE 18 april 2006

Specifying behaviour

Idle

Running

in1.stop/out.stop

in1.start/out.start

Technical Systems TUE 18 april 2006

Formal Verification
is not going

to output
“stop”

expects
“stop”

Deadlock Detected

Technical Systems TUE 18 april 2006

Questions

?

Technical Systems TUE 18 april 2006

Literature

� Prowell S., Trammell C., Linger R., Poore J,
Cleanroom Software Engineering: Technology and
Process, Addison-Wesley, 1999.

� Hoare C.A.R., Communicating Sequential Processes,
Prentice Hall International, 1985.

� Hall A., Seven Myths of Formal Methods, in: IEEE
Software Vol 7 No 5, 1990.

� FDR2 User Manual, Formal systems Europe Ltd,
2003.

